TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Speculative ray scheduling for large data visualization on supercomputers

    Thumbnail
    View/Open
    PARK-DISSERTATION-2021.pdf (6.891Mb)
    Date
    2021-08-16
    Author
    Park, Hyungman
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Scientific ray tracing now can include realistic shading and material properties, but tracing rays through partitioned data to calculate global illumination is inefficient because of the I/O overhead incurred by rays migrating from one partition to another. For such data, ray scheduling methods have demonstrated improved rendering performance by amortizing costs across a large group of rays. However, ray schedulers are prone to long-tail effects where much time is spent computing the solution for the final few rays, particularly for irregular ray tracing workloads. Solving this long-tail problem is increasingly important to maintain performance as complex ray tracing becomes more common for scientific analysis and for direct simulation of ray-like phenomena. In response, this dissertation introduces the concept of controlled redundancy to the domain of ray scheduling by means of speculation. We demonstrate that for both out-of-core and in situ rendering scenarios, speculatively scheduling rays to different regions of space both increases utilization of underlying resources and reduces total rendering time. In addition, we establish a communication abstraction to form a scheduling framework for novel asynchronous speculation. Furthermore, we incorporate simple heuristic prediction models, making the framework highly adaptable to a spectrum of scene characteristics. The framework is flexible enough to support a wide range of rendering techniques, including many variants of volume rendering and geometry rendering. Facilitated by high utilization, our scheduling method achieves many-times higher throughput on a multi-node, distributed system than prior methods, making our method fit for both interactive and offline applications.
    Department
    Electrical and Computer Engineering
    Subject
    Distributed-memory ray tracing
    Scientific visualization
    URI
    https://hdl.handle.net/2152/114196
    http://dx.doi.org/10.26153/tsw/41099
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin